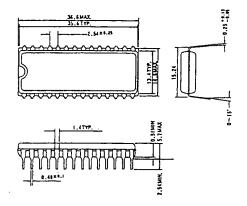


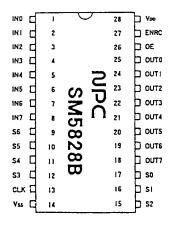
OVERVIEW

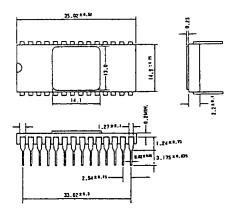

The SM5828B is a variable-length 8-bit shift register fabricated using NPC's original molybdenum-gate CMOS technology. The external input pins of the IC allow 1 to 128-step shift register settings. The shift clock with the maximum frequency of 20 MHz ensures high-speed operation. As static registers are used, data is retained even when the shift clock is stopped.

■ FEATURES

- 1 to 128-step settings
- 8-bit (1-byte) parallel input/output
- · Static registers
- Selection between circulation and noncirculation
- Maximum operating clock frequency 20 MHz
- Supply voltage 5 V ±0.5 V
- Input/output TTL compatible
- 28-pin DIP (plastic, ceramic)
- Molybdenum-gate CMOS construction

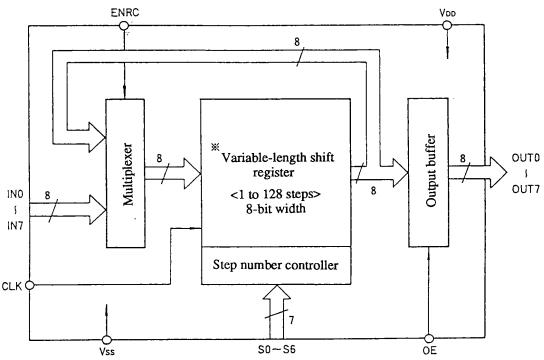
■ PACKAGE DIMENSIONS (Unit: mm)


• Plastic (SM5828BP)

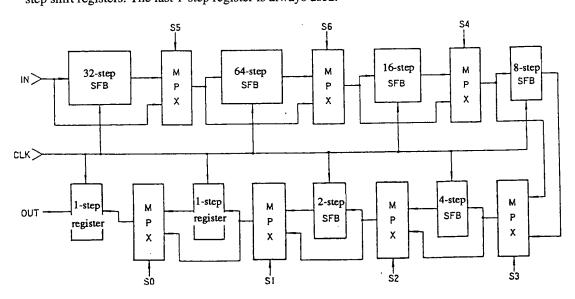

PACKAGE TYPES

Туре	Package
SM5828BP	28-pin plastic DIP
SM5828BC	28-pin ceramic DIP

■ PINOUT TOP VIEW



• Ceramic (SM5828BC)


* The SM5828BC guarantees high reliability.

■ BLOCK DIAGRAM

* Internal configuration of the variable-length shift register

The figure below shows the configuration of the variable-length shift register. According to the setting of S0 to S6, the multiplexer selects the output of each shift register block, realizing 1 to 128-step shift registers. The last 1-step register is always used.

MPX: Multiplexer

SFB: Shift register block

■ PIN DESCRIPTION

No	Name	Description			
1	INO:	Data input (0)			
2	IN1	Data input (1)			
3	IN2	Data input (2)			
4	IN3	Data input (2) Data input (3)			
5	IN4	Data input (4)			
6	IN5	Data input (5)			
7	IN6	Data input (6)			
8	IN7	Data input (7)			
9	S6	Data length select (6)			
10	S5	Data length select (5)			
11	S4	Data length select (4)			
12	S3	Data length select (3)			
13	CLK	Clock input			
14	Vss	Ground			
15	S2	Register length select (2)			
16	S1	Register length select (1)			
17	S0	Register length select (0)			
18	OUT7	Data output (7)			
19	OUT6	Data output (6)			
20	OUT5	Data output (5)			
21	OUT4	Data output (4)			
22	OUT3	Data output (3)			
23	OUT2	Data output (2)			
24	OUT1	Data output (1)			
25	OUT0	Data output (0)			
26	OE	Output enable			
27	ENRC	Circulation and non-circulation control			
28	V _{DD}	Power supply $(5 \pm 0.5 \text{ V})$			

Note All input pins have pull-up resistors. All output pins are in tristate.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage	V _{DD}	-0.3 to 7.0	V
Input voltage	Vin	-0.3 to V _{DD} + 0.3	V
Storage temperature	Тѕтс	-40 to 125	°C
Power dissipation	Pw	750	mW
Soldering temperature	Tsld	255	°C
Soldering time	tsld	10	Sec

■ RECOMMENDED OPERATING CONDITIONS

(Vss = 0V)

Parameter	Symbol	Condition	Unit
Supply voltage	V_{DD}	4.5 to 5.5	
Operating temperature (SM5828P)	Toprp	–20 to 70	°C
Operating temperature (SM5828C)	Toprc	-30 to 85	°C

■ DC CHARACTERISTICS

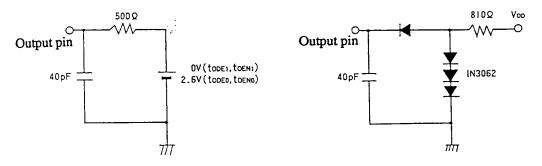
SM5828BP ... Ta = -20 to 70 °C, VDD = 4.5 to 5.5 V, Vss = 0 V SM5828BC... Ta = -30 to 85 °C, VDD = 4.5 to 5.5 V, Vss = 0 V unless otherwise noted.)

Paramete	Pin	Symbol	Condition	Rating			Unit	Remarks
Taramete	ķm	Symbol	Condition	MIN	TYP	MAX		Remarks
Current consumption at standby	VDD	Isт	V _{DD} = 5.5V		0.01	100	μΑ	
Current consumption during operation	Vdd	IDD	Note			100	mA	See Figure 2.
Input voltage	*1	Vih		2.4			V	
_		VIL				0.5		
Output voltage	*2	Vон	$I_{OH} = -0.4 \text{mA}$	2.5			V	
_		Vol	IoL= 1.6mA			0.4		
Input current	*1	In	$V_{IN} = 0V$		7	20	μA	
Input leak current	*1	ILH	$V_{IN} = V_{DD}$			1	μΑ	
Output Hi-Z current	*2	Izн	Vout = Vdd			5	μΑ	
		Izı	Vout = 0V			5		

(Pin type)

* 1	ENRC, INO to IN7, SO to S6, CLK, OE
* 2	OUT1 to OUT7

Note) Clock frequency fcL κ = 20 MHz, OE pin = 0 V Clock input voltage V_{IH} = 2.4 V, V_{IL} = 0.5 V


■ AC CHARACTERISTICS

(VDD = 4.5 to 5.5 V, Vss = 0 V unless otherwise noted)

Paramete	Pin Symbo		Condition		BC type(-20 to 85°C)		BC type (-30 to 70°C)			Unit	Remarks				
				MIN	TYP	MAX	MIN	ГҮР	MAX						
Clock frequency	CLK	fclk	$V_{IH} = 2.4V$, $V_{IL} = 0.5V$			20			20	MHz					
Clock rise time	CLK	tcr				100			100	nsec					
Clock fall time	CLK	tcf				100			100	nsec					
Clock pulse width	CLK	twн		20			20			nsec					
	IN0 to 7	ts1	Register length: LR = 1 to 16 steps Figure 1	60			55			nsec	Figure 1				
Input setup time	ENRC	ts2	Register length: LR = 17 to 128 steps Figure 1	45			40			nsec	Figure 1				
	SO to 6	ts3		80			80			nsec					
	INO to 7			0			0			nsec					
Input hold time	ENRC	IRC thi		0		<u> </u>				nscc					
input note that	S0 to 6	t _{H2}		10			10			nsec					
Output enable delay	OUT		Load condition 1								77. 0				
time	0 to 7	toen	(Note 1)			40			35	nsec	Figure 3				
Output disable delay	OUT	tope	Load condition 1								Eigura 2				
time	0 to 7	LODE	(Note 1)	<u> </u>	<u></u>	40			35	nsec	Figure 3				
Output data delay	OUT	tn	Load condition 2			45			40	nsec	Figure 3				
time	0 to 7	t _D	(Note 2)		43		43		45		40		40		

(Note 1) Load condition 1

(Note 2) Load condition 2

■ REGISTER STEP SETTING

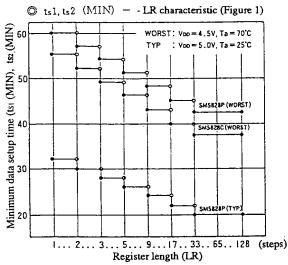
Set the number of register steps by using the register length select pins S0 to S6.

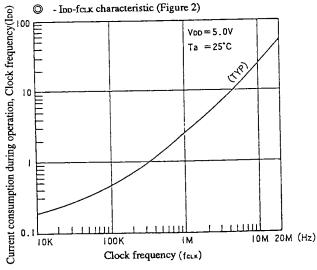
L=64•(S6)+32•(95)±16•(S	(4)+8(\$3)+4	•(S2)+2•(S	1)+(S0)+1
L=04*(30)+32*(99)+10•(9	14)+0(<i>33)+</i> 4	*(32) * *(3	1/7(30/71

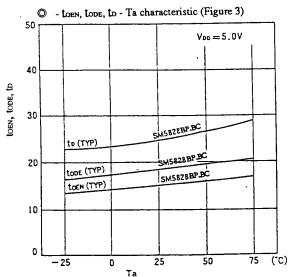
Step	S 6	S5	S4	S3	S2	S2	S0
128	1	1	1	1	1	1	1
127	1	1	1	1	1	1	0
126	1	1	1	1	1	0	1
125	1	1	1	1	1	0	0
				•			
·				•			
.							
66	1	1	0	0	0	0	1
65	1	1	0	0	0	0	0
				•			
				•			
				•			
3	0	0	0	0	0	1	0
2	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0
	<u> </u>						

Note)

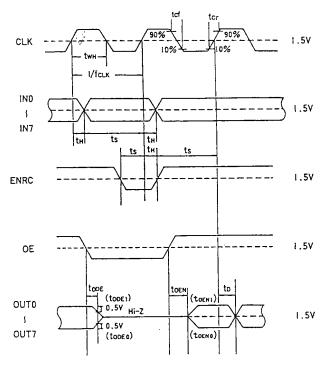
1. 1 ... High or Open,

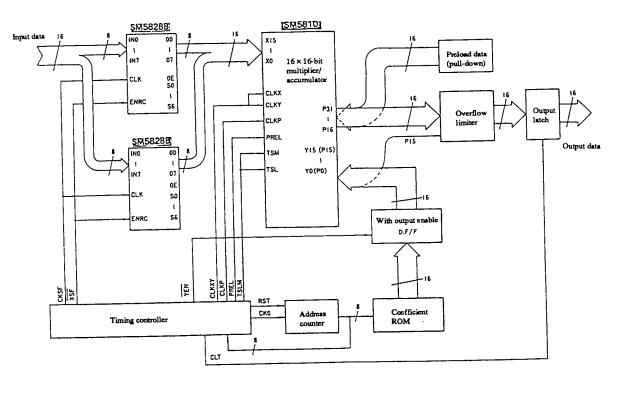

0 Low


2. S0 to S6 pins have internal pull-up resistors.


■ INPUT/OUTPUT CONTROL

	Input		Shift register	Output
ENRC	CLK	OE	(internal)	OUT0 to OUT7
X	X	0	_	Hi–Z
X	X	1	_	ENABLE
1	<i>f</i>	X	Circulation	_
0	<i></i>	X	No circulation	


■ TYPICAL CHARACTERISTICS



TIMING CHART

■ TYPICAL APPLICATION (Block diagram of a 16-bit FIR digital filter using the SM5828B)

