Signetics

TDA1540TD, PN 14-Bit DAC (Serial Output)

Product Specification

033018

Linear Products

DESCRIPTION

The TDA1540 is a monolithic integrated 14-bit digital-to-analog converter (DAC). It incorporates a 14-bit input shift register with output latches, binary weighted current sources with switches and a reference source.

The IC features an improved switch circuitry which eliminates the need for a deglitcher circuit at the output. This results in a signal-to-noise ratio of typical 85dB in the audio band.

FEATURES

- Clock frequency 12MHz
- Signal-to-noise ratio 85dB
- TTL compatible input
- On-chip current reference
- Inherent monotonicity from -25°C to 70°C
- Serial data input

APPLICATIONS

- Sound reproduction
- Recording systems
- Graphic display systems
- Electron-beam recording

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE
28-Pin Plastic DIP (SOT-117BE)	0 to + 70°C	TDA1540PN
28-Pin Plastic SO (SOT-117BE)	0 to+70°C	TDA1540D

PIN CONFIGURATION

November 14, 1986 5-221 853-0969 86554

per Bah input code - lin.

ABSOLUTE MAXIMUM RATINGS

SYMBOL	DESCRIPTION	RATING	UNIT
·	Supply voltages with respect to GND (Pin 6)		
V _{CC1}	at Pin 4	MAX. 12	V
V _{N1}	at Pin 7	MAX12	l v
V _{N2}	at Pin 11	MAX20	V
V _{P1} - V _{N2}	at Pin 4 with respect to Pin 11	MAX. 32	V
V _{N1} - V _{N2}	at Pin 7 with respect to Pin 11	-1 to +20	V
P _{TOT}	Total power dissipation	Max. 600	mW
T _{STG}	Storage temperature range	-65 to +150	°C
TA	Operating ambient temperature range	-25 to +80	°C

DC ELECTRICAL CHARACTERISTICS $T_A = 25$ °C at typical supply voltages unless otherwise specified.

			LIMITS		
SYMBOL	PARAMETER	Min	Тур	Max	UNIT
Supply voltages	with respect to GND (Pin 6)	•		•	
V _{CC1}	at Pin 4	3	5	7	٧
V _{N1}	at Pin 7	-4.7	-5	−7 −18	V
V _{N2}	at Pin 11	-16.5	-17	-18	<u>v</u>
Supply currents		r		17	\
lcc i	at Pin 4 ¹ at Pin 7		12 -20	14 -24	mA mA
I _{N1} I _{N2}	at Pin 11		-11	-13	mA
Power dissipati		l l		51	<u> </u>
Ртот	Total power dissipation		350	410	mW
Temperature		•			
T _A	Operating ambient temperature range	-20		+70	°C
Data input DAT	A (Pin 1)				
V _{IH}	Input voltage HIGH	2.0		7.0	٧
V _{IL}	Input voltage LOW	0		0.8	٧
h _H	Input current HIGH at VIH			50	μΑ
-I _{IL}	Input current LOW at VIL			0.2	mA
BR _{MAX}	Maximum input bit rate	12			Mbits/s
Latch enable in Clock input CP					
V _{IH}	Input voltage HIGH	2.0		7.0	٧
V _{IL}	Input voltage LOW	0		0.8	V
l _{IH}	Input current HIGH at VIH			50	μΑ
-I _{IL}	Input current LOW at VIL			0.2	mA
f _{CPMAX}	Maximum clock frequency	12			MHz
Oscillator (Pins	8 and 9)				
fosc	Oscillator frequency at C8-9 = 820pF	100	160	200	kHz

5-222

TDA1540TD, PN

DC ELECTRICAL CHARACTERISTICS (Continued) TA = 25°C at typical supply voltages unless otherwise specified.

SYMBOL		LIMITS			
	PARAMETER	Min	Тур	Max	UNIT
Analog output	Ι _{Ουτ} (Pin 22)	'		-	
V _{oc}	Output voltage compliance	-10		(+10)	(mV)
I _{FS}	Full-scale current	3.8	4.0	4.2	mA
± Izs	Zero-scale current			100	nA
TC _{FS}	Full-scale temperature coefficient T _A = -20 to +70°C		± 30 × 10 ⁻⁶		°C ⁻¹
tcs (Settling time to ± ½ LSB all bits on or off		0.5		μs
S/N	Signal-to-noise ratio ²	80	85		dB

- 1. When the output current is ½1/FS (½ full-scale output current).
 2. Signal-to-noise ratio within 20Hz and 2011.

FUNCTIONAL DESCRIPTION

The binary weighted current sources are obtained by a combination of a passive divider and a time division concept. Figure 1a gives the diagram of one divider stage. The total emitter current 4 1 of the passive divider is divided into four more or less equal output

The output currents of the passive divider are now interchanged during equal time intervals generated by means of a shift register. The

average output currents are exactly equal as a result of this operation. A ripple on the output current, caused by a mismatch of the passive divider, is filtered by an AC low-pass filter, requiring an external filter capacitor.

The outputs of the dividers are combined to obtain the output currents I (\bar{l}_1) , I (\bar{l}_2) and 2I (\bar{l}_3) (see Figure 1b). The current of the most significant bit is generated by an on-chip reference source. A binary weighted current network is formed by cascading the current division stages (see Figure 2).

The interchanging pulses are generated by an on-chip oscillator and a 4-bit shift register. The binary currents are switched to the current output (Pin 22) via diode-transistor switching stages; therefore, the voltage on the output pin must be 0V ± 10mV. The output current can be converted into a voltage by means of a summing amplifier.

Figure 3 represents the data input format, and an application circuit is given in Figure 4.

November 14, 1986

5-223

TDA1540TD, PN

5-224

November 14, 1986

TDA1540TD, PN

Œ